146 research outputs found

    Quantum trajectories for time-dependent adiabatic master equations

    Full text link
    We develop a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension NN instead of a complex density matrix of dimension N2N^2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor NN advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2N^2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 88-qubit quantum annealing examples. We also apply the quantum trajectories method to a 1616-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.Comment: 17 pages, 7 figure

    When Opposite Attract: An Exploratory Study of the Relationship between Entrepreneurial Orientation and Market Orientation and their Paths to Innovation and Performance

    Get PDF
    A central challenge facing firms is their ability to innovate and create new products whilst at the same time meeting existing market demands. Entrepreneurial orientation has been proposed as a solution to the former whilst market orientation is proposed as a solution to the latter. Entrepreneurial orientation is a mindset a firm can employ to encourage innovative and creative activity designed to create products in anticipation of future market trends. Market orientation is a set of behaviours associated with collecting, disseminating and responding to information on current customers and market needs. Recent research has suggested that a firm should use both orientations to ensure it does not become market-led but is instead market-leading with its current and future products. However, studies into the simultaneous use of EO and MO have reported tensions between the two orientations such that they may be compatible. This problem is compounded by contradictory research findings which imply that we are yet to fully understand how the two work together in practice. In this study, a thorough analysis is made of literature into the relationship between the two orientations and a conceptual model is developed specifying how the two can be made to work in practice and what their outcomes are likely to be. This model is then explored using two case studies: BMW and Toyota. It is found that EO, MO, and EO and MO in conjunction are all different paths to superior performance but each path bears very different characteristics and implications for the type of learning and the type of innovation. Implications for academics, managers, and public policy are highlighted as well as avenues for future research. Study limitations are also acknowledged

    Standard quantum annealing outperforms adiabatic reverse annealing with decoherence

    Full text link
    We study adiabatic reverse annealing (ARA) in an open system. In the closed system (unitary) setting, this annealing protocol allows avoidance of first-order quantum phase transitions of selected models, resulting in an exponential speedup compared with standard quantum annealing, provided that the initial state of the algorithm is close in Hamming distance to the target one. Here, we show that decoherence can significantly modify this conclusion: by resorting to the adiabatic master equation approach, we simulate the dynamics of the ferromagnetic pp-spin model with p=3p=3 under independent and collective dephasing. For both models of decoherence, we show that the performance of open system ARA is far less sensitive to the choice of the initial state than its unitary counterpart, and, most significantly, that open system ARA by and large loses its time to solution advantage compared to standard quantum annealing. These results suggest that as a stand-alone strategy, ARA is unlikely to experimentally outperform standard "forward" quantum annealing, and that error mitigation strategies will likely be required in order to realize the benefits of ARA in realistic, noisy settings.Comment: 12 pages, 11 figure

    Breakdown of the weak coupling limit in quantum annealing

    Full text link
    Reverse annealing is a variant of quantum annealing, in which the system is prepared in a classical state, reverse-annealed to an inversion point, and then forward-annealed. We report on reverse annealing experiments using the D-Wave 2000Q device, with a focus on the p=2p=2 pp-spin problem, which undergoes a second order quantum phase transition with a gap that closes polynomially in the number of spins. We concentrate on the total and partial success probabilities, the latter being the probabilities of finding each of two degenerate ground states of all spins up or all spins down, the former being their sum. The empirical partial success probabilities exhibit a strong asymmetry between the two degenerate ground states, depending on the initial state of the reverse anneal. To explain these results, we perform open-system simulations using master equations in the limits of weak and strong coupling to the bath. The former, known as the adiabatic master equation (AME), with decoherence in the instantaneous energy eigenbasis, predicts perfect symmetry between the two degenerate ground states, thus failing to agree with the experiment. In contrast, the latter, known as the polaron transformed Redfield equation (PTRE), is in close agreement with experiment. Thus our results present a challenge to the sufficiency of the weak system-bath coupling limit in describing the dynamics of current experimental quantum annealers, at least for reverse annealing on timescales of a microsecond or longer.Comment: arXiv admin note: substantial text overlap with arXiv:2107.0723

    Suppression of crosstalk in superconducting qubits using dynamical decoupling

    Full text link
    Currently available superconducting quantum processors with interconnected transmon qubits are noisy and prone to various errors. The errors can be attributed to sources such as open quantum system effects and spurious inter-qubit couplings (crosstalk). The ZZ-coupling between qubits in fixed frequency transmon architectures is always present and contributes to both coherent and incoherent crosstalk errors. Its suppression is therefore a key step towards enhancing the fidelity of quantum computation using transmons. Here we propose the use of dynamical decoupling to suppress the crosstalk, and demonstrate the success of this scheme through experiments performed on several IBM quantum cloud processors. In particular, we demonstrate improvements in quantum memory as well as the performance of single-qubit and two-qubit gate operations. We perform open quantum system simulations of the multi-qubit processors and find good agreement with the experimental results. We analyze the performance of the protocol based on a simple analytical model and elucidate the importance of the qubit drive frequency in interpreting the results. In particular, we demonstrate that the XY4 dynamical decoupling sequence loses its universality if the drive frequency is not much larger than the system-bath coupling strength. Our work demonstrates that dynamical decoupling is an effective and practical way to suppress crosstalk and open system effects, thus paving the way towards higher-fidelity logic gates in transmon-based quantum computers.Comment: Updated version includes additional results on improving the performance of single and two-qubit gates using dynamical decoupling. 22 pages and 12 figure

    A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells

    Get PDF
    Purpose Glioblastoma Multiforme (GBM) is the commonest brain tumour in adults. A population of cells, known as cancer stem cells (CSCs), is thought to mediate chemo/radiotherapy resistance. CD133 is a cell surface marker to identify and isolate CSCs. However, its functional significance and the relevant microenvironment in which to study CD133 remain unknown. We examined the influence of hypoxia on CD133 expression and the potential functional significance of CD133 in glioblastoma chemoresistance. Methods Gene expression was analysed by qRT-PCR. siRNA technique was used to downregulate genes and confirmed by flow cytometry. IC50 values was evaluated with the Alamar blue assay. Results CD133 expression was upregulated in hypoxia in 2D and 3D models. There was increased resistance to chemotherapeutics, cisplatin, temozolomide and etoposide, in cells cultured in hypoxia compared to normoxia. siRNA knockdown of either HIF1a or HIF2a resulted in reduced CD133 mRNA expression with HIF2a having a more prolonged effect on CD133 expression. HIF2a downregulation sensitized GBM cells to cisplatin to a greater extent than HIF1a but CD133 knockdown had a much more marked effect on cisplatin sensitisation than knockdown of either of the HIFs suggesting a HIF-independent mechanism of cisplatin resistance mediated via CD133. The same mechanism was not involved in temozolomide resistance since downregulation of HIF1a but not HIF2a or CD133 sensitized GBM cells to temozolomide. Conclusion Knowledge of the mechanisms involved in the novel hypoxia-induced CD133-mediated resistance to cisplatin observed might lead to identification of new strategies that enable more effective use of current therapeutic agents

    The impact of compassion from others and self-compassion on psychological distress, flourishing, and meaning in life among university students

    Get PDF
    Objectives: Research shows that compassion from others and from the self may enable university students to face, overcome, and bounce back from adversity and generate a greater sense of thriving and meaning in life. However, the underlying processes are largely unknown. The present study aimed to examine the associations of compassion with psychological distress, flourishing, and meaning in life among university students and explore the mechanisms underlying these associations. Methods: A total of 536 Hong Kong university students completed questionnaires measuring their experiences of compassion from others, self-compassion, resilience, psychological distress, flourishing, and meaning in life. Results: Serial mediation analyses showed that compassion from others was associated positively with self-compassion, which was, in turn, linked to greater resilience and consequently lower levels of psychological distress and higher levels of flourishing and meaning in life. Conclusions: Our findings reveal the associations of compassion from others and self-compassion with the well-being and life meaning of university students. The findings highlight the importance of being open and receptive to love and kindness from others. The findings also point to the importance of developing a caring attitude toward oneself

    Search for neutral heavy leptons produced in ZZ decays

    Get PDF
    Weak isosinglet Neutral Heavy Leptons (νm) have been searched for using data collected by the DELPHI detector corresponding to 3.3 × 106 hadronic Z0 decays at LEP1. Four separate searches have been performed, for short-lived νm production giving monojet or acollinear jet topologies, and for long-lived νm giving detectable secondary vertices or calorimeter clusters. No indication of the existence of these particles has been found, leading to an upper limit for the branching ratio BR(Z0 → νmν̄) of about 1.3 × 10-6 at 95% confidence level for νm masses between 3.5 and 50 GeV/c2. Outside this range the limit weakens rapidly with the νm mass. The results are also interpreted in terms of limits for the single production of excited neutrinos. © Springer-Verlag 1997

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone
    corecore